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Kivonat

Az önvezető autók kétség kívűl az autós közlekedés jövőjét jelentik. A kényelem és időmeg-
takarítás amit nyújthatnának számunkra, motiváció számunkra a kutatásukra. Már ma is
vannak autonóm közlekedési rendszerek, mint pélául a vasúti hálózatok vagy a földalatti
metró, azonban ez nem mondható el az autókról. Ahhoz, hogy egy autó önmagát vezesse,
szükséges hogy az értse a környezetét, és ez egy emberi intelligencia szint közeli feladat.
Mi magunknak is nehéz körülírni mit is jelent az, hogy "érteni a környezetünket".

A tudomány sokat fejlődött az utóbbi időszakban a mesterséges intellgiencia területén,
és jelenlegi álláspontján olyan módszereket ismerünk amik ebben a feladatban segíthetnek.
A gépi tanulás új módszerei forradalmasították az intelligens érzékelés területét különle-
gesen a mély tanuló (Deep Learning) rendszerek és a konvolúciós neurális hálok. Ezeknek
az algoritmusoknak az alkalmazása kulcsfontosságú egy autonóm jármű megalkotásához.

Néhány említésre méltó vállalat már az élen jár az önvezető autókkal, elsősorban Tesla,
az ameriaki elektromosautó-gyártó, Waymo, Google egyik alvállalata vagy egy önvezetési-
megoldás szolgáltató MobilEye. Ezek a vállalatok olyan algoritmusokat használnak amik
világszinten vannak kutatva és fejlesztve, és jómagam is ezeket az algoritmusokat alkal-
mazom hogy egy önvezető rendszer részét megalkossam.

Ebben a munkában egy jelenetértelmező szoftvert készítek ami vezetési jelenetek ér-
telmezésére specializált. Úgy döntöttem hogy a rendszert egy szimulátor, CARLA, se-
gítségével fejlesztem és tesztelem. Egy szimulátor használata nagy szabadságot biztosít
számunkra a munka során.

Felkutattam a meglévő önvezető autó megoldásokat, és belőlük inspirálódva egy olyan
szoftvert fejlesztek ami képes fontos információ kienyerésére vezetési jelenetekből. A távol-
ság méréshez sztereo képfeldolgozást alkalmaztam a virtuális autónk tetőjére szerelve. A
képi jelenetekből való információ kinyeréséhez előre kitanított konvolúciós neurális hálókat
használtam. A szoftver minden képkockára végrehajtja a jelenetértelmezést és a kinyert
információt exportálja. A szoftver teljesítményének mérlegeléséhez egy 3D-s vizualizáló
webalkalmazást fejlesztettem amivel szimultáns visszajátszhatjuk a programatikusan ki-
nyert valós adatsort és a detektált adatsort ezzel látva a jelnetértelmező eltérését, miközben
a forrás videó anyag is szinkron lejátszódik. Végül megállapítottam a rendszer validitását
valós alkalmazhatóságra és továbbfejlesztési utakat vázoltam fel. Ez a munka és a 3D web
vizualizáló elérhető és kipróbálható a https://najibghadri.com/msc-thesis/ címen.
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Abstract

Autonomous driving is undoubtedly the future of transportation. The comfort that it
brings us is what drives us to work on making it real. We already have autonomous
systems in public transportation in abundance, but it is different when we talk about
the car roads. Driving a car requires near-human intelligence due to the nature of the
environment, in fact it is impossible to define the environment. A train’s or subways’s
environment can be defined mathematically and hence controlled easly, but for a machine
to drive a car, it has to understand what we understand, and what we understand is even
hard to define ourselves.

Computer science has come a long way, and we have already seen the rise of artificial
intelligence algorithms and their effectiveness. Out of these methods Deep Learning and
Convolutional Neural Networks are key tools in achieving our goal. With these algorithms
computers learn general concepts of the world, and this is essential to make a safe au-
tonomous driving (AD) system. We will see in this work briefly what they are and how
they work.

Some notable companies have already achieved a high level of AD, most notably Tesla,
and another AD supplier MobilEye. These companies use algorithms that are developed
globally and publicly and I used them in the algorithm to partly achieve what they have
achieved.

In this work I create a Scene Understanding system specialized for driving situations. I
choose to evaluate the system on a virtual car driving simulation called CARLA Sim, that
is going to benefit us to measure our rate of success.

I researched how existing autonomous driving systems have been built, and inspired by
them I designed a system that is capable of recognizing important information for a car
on the road. I used stereo imaging of multiple RGB cameras mounted on top of our
virtual car for depth estimation and used trained Convolutional Neural Networks to then
perform further infomration extraction from the images and perform detection for each
frame of the simulation. I made a 3D webvisualizer that is able to show us the difference
between ground truth information extracted programatically from the simulator and the
detection infomration while simultaneously play a montage video of the simulation. Finally
I evaluated the system and measured it’s validity for real situations and provided further
improvement notes on my work. This thesis is also published on https://najibghadri.
com/msc-thesis/ where you can try the 3D webvisualizer.
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Chapter 1

Introduction

I am passionate about artificial intelligence and as much inspired by the work of tech
companies such as Tesla. Tesla has managed create cutting edge technology, creating
compelling and practical electric cars combined with their Tesla Autopilot system. It has
become iconic to sit in a Tesla and watch it drive itself. Tesla has already driven 3 billion
kilometers on autopilot, their access to data is most likely number one in the world. There
are other important companies who develop autopilot systems, one of them is MobilEye
an Israeli subsidiary of Intel corporation that was actually a supplier of Tesla until they
set apart in part due to disagreements on how the technology should be built, which is an
important topic that will be discussed in the thesis.

There are a couple of topics we should establish first. The first being levels of autopilot
systems as defined by SAE (Society of Automotive Engineers) (Figure 1.1).

Figure 1.1: Levels of driving automation defined in SAE J3016 [1]
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From level 0 to 2 are automations where the human is still required to fully monitor the
driving environment. Tesla’s autopilot is Level 2 which is partial automation that includes
control of steering and both acceleration and deceleration. From Level 3 the human is not
required to monitor the environment. Full automation, where the driver is not expected to
intervene and the vehicle is able to handle all situations is on Level 5. In order to achieve
that level the autopilot must fully understand the environment.

This is however difficult. The algorithms that we know today are not enough to achieve
understanding of the environment yet. Even Convolutional Neural Networks (CNNs)
are not cabale of understanding deep concepts of the world. CNNs are mainly used in
computer vision and are useful when we want to recognize patterns that appear anywhere
in 2D images. Today we are able to calssify images, detect and localize objects, segment
images to high accuracy, however this doesn’t mean the computer understands the scenes.
Furthermore these algorithms are trained specifically: To build a detection neural network
(NN) first a meticulous dataset must be created that tells the algorithm what must be
detected - we call this the ground truth, or training data set. Then the NN must be trained
and optimized until it yields a low error on the test dataset. We call this Deep Learning
due to the fact that the networks contain millions of parameters that are trained through
hundreds of thousands of iterations. This is not close to what might be general AI.

In this sense we can argue about the meaning of "scene understanding". There is research
going on in the direction of general AI most notably in my opinion by Yann LeCun the
chief at Facebook AI and professsor at NYU, who works on a concept called energy-based
models. The Energy-based model that is a form of generative model allows a mathematical
"bounding" or "learning" of a data distribution in any dimension. Upon prediciton the
model tries to generate a possible future for the current model in time, where the generated
future model acts as the prediciton itself. Generative adversarial networks are a type of
these models. This is in contrast to the other main machine learning approach that is the
discriminative model which is what we use mostly. Perceptrons such as NNs and CNNs,
support vector machines fall into this category, however the distinction is not clear.

For the purpouse of this thesis it is important to define what a system capabale of under-
standing scences in driving situations means. The essentials are the following:

• Lane and path detection

• Driveable area detection

• Object detection: cars, pedestrians, etc.

• Object localization in 3D real world space

• Object tracking and identification

• Foreign object detection: anything that shouldn’t be where it is

• Traffic light and sign understanding

• Handling occlusion of objects

• Pedestrian crossing detection

• Knowledge of surroundings and road for example with the help of high definition
maps

2



In an ideal world, where all cars are autonomous these perceptions would be enough,
however the future of self-driving cars is going to be a transition, where both humans and
machines will drive on the roads. We humans already account for each other (we try as
we can), but self-driving cars will have to account for us too. We might not be smart but
driving on the road sometimes requires improvization to save a situation and we might
need a more general AI.

For the vehicle to understand it’s surroundigs first of all it needs sensors. Each company
goes differently about the sensor suite, and it is quite interesting to examine each solution.
This will be discussed in the chapter Chapter 4 Other solutions.

1.1 Proposed solution

In order to develop the proposed system, a sizeable dataset is needed. There are many
datasets available on the internet for car driving. They include object detections, seg-
mentations, map data, LiDAR data. Some of the most notable ones are the nuScenes
dataset [2], Waymo dataset [3] from Google’s self-driving car company or the Cityscapes
dataset [4] and more. Each of these datasets are good, however they are not really helpful
for our case.

In order to localize objects in 3D space I use stereo imaging. Each AD system today em-
ploys stereo camera setting because it is a simple and cheap but accurate way of estimating
depth for each pixel in an image. In order to have the freedom to create a custom camera
setting I cannot rely on these datasets. Furthermore, I want to measure the success rate
of my detector however there is no dataset that contains all the necessary information,
because in fact it is not possible to collect everything from the real world.

This is why I choose to use a simulation instead to test the system. Using a simulation
gives a huge ammount of freedom. My research work started in looking for simulators that
let me extract data from the simulation in each frame and let’s me create custom world
scenario and sensor settings.

After an extensive research of self-driving car simulators I found CARLA Simulator [5]
(a screenshot is seen on Figure 1.2) to be the most advanced one that is also opensource.
CARLA is a quite mature simulator with an API that fulfills our requirements.

I set up the virtual vehcile with 10 RGB cameras mounted on the roof creating 4 stereo
sides as shown on Figure 1.3. As the title of the thesis says, I only used RGB cameras
and no other sensors. Tesla additionally uses radar and sonar sensors taking contrary
to almost all other players in the field who also employ a LiDAR sensor for depth data
including MobilEye and Waymo. LiDAR data is good for correction, but it is better if the
AI can equally perform using only RGB cameras, since it is a more general solution that
is closer to how we humans percieve the environment.

The detector uses state-of-the-art detection, localization and segmentation model Detec-
tron2 [6] a MASK R-CNN conv net model based on Residual neural networks and Feature
Pyramid Networks trained on the COCO [7] general dataset.

Finally I develop a 3D webvisualizer that lets us replay the ground truth and detection log
simultaneously and compare the error between the two. Figure 1.4 depicts this taskflow.

3



Figure 1.2: A screenshot from CARLA

Figure 1.3: How the cameras are set up on the roof

Figure 1.4: Task flow

4



1.2 Summary of results

The result is a detector that is capable of localizing vehicles, and pedestrians on the road
up to 100 meters with an accuracy of ~1m in an angle of 270◦centered to the front. The
algorithm is written in Python and uses PyTorch, with that on an NVIDIA Titan X GPU
the detector can perform in 2.7FPS for one side, ie. for two cameras. In an embedded
optimized system using C or C++ code this can easily be improved to even 60FPS creating
a real-time system. The code cannot perform lane detection yet, but that would have been
the easier part. The webvisualizer let’s us relplay the simulation frame by frame and see
the detection error for each actor in the scene. It also shows a montage the original,
detection and depthmap. Below, Figure 1.5 shows a screenshot of the webvisualizer in
action.

Figure 1.5: 3D wevisualizer

All of the code for the thesis, detector, simulator configuration and webvisualizer is avail-
able on https://github.com/najibghadri/msc-thesis and you can access the web-
visualizer and interactively replay and test simulations on https://najibghadri.com/
msc-thesis/.

1.3 Thesis structure

In Chapter 2 I give an overview of the widely used sensors for peception in the automotive
industry: RGB cameras, radar, LiDAR and ultrasonic sensors. In Chapter 3 I talk about
different kinds of perceptions, state-of-the-art Convolutional Networks and computer vi-
sion algorithms that are useful for our use-case.

In Chapter 4, I analyze and compare different self-driving car solutions: Tesla and Waymo
self-driving cars and MobilEye autopilot. In Chapter 5, I introduce CARLA Simulator
and some notable features of it.

In Chapter 6 I define the technical assumptions that I made in order to simplify the task
and the resulting limitations.

Chapter 7 details the design and implementation of the simulator configuration, the de-
tector algorithm and the webvisualizer.

5
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Then in Chapter 8 I present different measurements and results, I discuss ways to improve
the system in Chapter 9. In Chapter 10 I present experimentations that ended up not
being part of the detection and finally close with a conclusion.

6



Chapter 2

Sensors

Selecting the right sensors to understand the environment is half the task. Combining
multiple sensors to collect data for further information extraction is called sensor fusion.
This chapter details the most widely used sensors for scene understanding for autonomous
vehicles and compare them.

Radar, utrasonic and LiDAR sensors basically all work the same: emit a wave, wait
until it returns and estimate the distance based on the time difference, and estimate the
speed calculating the frequency shift - this is the Doppler effect: an increase in frequency
corresponds to an object approaching and vice versa. A visualization is seen on Figure 2.1.

Figure 2.1: Sensing object with wave emission and reflection

Thus calculating the distance is a simple equation:

Distance = Speed of wavefrom ∗ Time of F light

2 (2.1)

However they use different waves: Radar works with electromagnetic waves, ultrasonic
sensors work with sound waves and LiDAR works with laser light.

7



2.1 Radar

Radar sensors at the front, rear and sides have become an essential component in modern
production vehicles. Though most frequently used as part of features like parking assis-
tance and blind-spot detection, they have the capability to detect objects at much greater
range – several hundred meters in fact.

Radar sensors are excellent at detecting objects, but they’re also excellent for backing up
other sensors. For instance, a front-facing camera can’t see through heavy weather. On
the other hand, radar sensors can easily penetrate fog and snow, and can alert a driver
about conditions obscured by poor conditions. Radar is robust in harsh environments
(bad light, bad weather, extreme temperatures).

Automotive radar sensors can be divided into two categories: short-range radar (SRR),
and long-range radar (LRR). The combination of these types of radar provides valuable
data for advanced driver assistance systems.

Short-range radar (SRR) Short-range radar (SRR): Short-range radars (SRR) use the
24 GHz frequency and are used for short range applications like blind-spot detection,
parking aid or obstacle detection and collision avoidance. These radars need a steerable
antenna with a large scanning angle, creating a wide field of view.

Long-range radar (LRR) Long-range radar (LRR): Long-range radars (LRR) using the
77 GHz band (from 76-81GHz) provide better accuracy and better resolution in a smaller
package. They are used for measuring the distance to, speed of other vehicles and detecting
objects within a wider field of view. Long range applications need directive antennas that
provide a higher resolution within a more limited scanning range. Long-range radar (LRR)
systems provide ranges of 80 m to 200 m or greater.

2.2 Ultrasonic

Ultrasonic (or sonar) sensors, alike radar, can detect objects in the space around the
car. Ultrasonic sensors are much more inexpensive than radar sensors, but have a limited
effective range of detection. Because they’re effective at short range, sonar sensors are
frequently used for parking assistance features and anti-collision safety systems. Ultrasonic
sensors are also used in robotic obstacle detection systems, as well as manufacturing
technology. Ultrasonic sensors are not as susceptible to interference of smoke, gas, and
other airborne particles (though the physical components are still affected by variables
such as heat), and they are independent of light conditions. They also work based on the
reflection of emission principle.

Ultrasound signals refer to those above the human hearing range, roughly from 30 to 480
kHz. For ultrasonic sensing, the most widely used range is 40 to 70 kHz. At 58 kHz, a
commonly used frequency, the measurement resolution is one centimeter, and range is up
to 11 meters. At 300 kHz, the resolution can be as low as one millimeter; however, range
suffers at this frequency with a maximum of about 30 cm.

2.3 LiDAR

As Radar is to radio waves, and sonar is to sound, LiDAR (Light Detection and Ranging)
uses lasers to determine distance to objects. LiDAR sometimes is called 3D laser scanning.

8



It does this by spinning a laser across its field of view and measuring the individual
distances to each point that the laser detects. This creates an extremely accurate (within
2 centimeters) 3D scan of the world around the car.

The principle behind LiDAR is really quite simple. Shine a small light at a surface and
measure the time difference it takes to return to its source. The equipment required to
measure this needs to operate extremely fast. The LiDAR instrument fires rapid pulses
of laser light at a surface, some at up to 150,000 pulses per second. A sensor on the
instrument measures the amount of time it takes for each pulse to bounce back. Light
moves at a constant and known speed so the LiDAR instrument can calculate the distance
between itself and the target with high accuracy. By repeating this in quick succession
the insturment builds up a complex ’map’ of the surface it is measuring.

The three most common currently used or explored wavelengths for automotive LiDAR
are 905 nm, 940 nm and 1550 nm, each with its own advantages and drawbacks.

LiDAR sensors are able to paint a detailed 3D point cloud of their environment from the
signals that bounce back instantaneously. It provides shape and depth to surrounding cars
and pedestrians as well as the road geography. And, like radar, it works just as well in
low-light conditions.

You can see how a LiDAR sensor from Luminar1 reconstructs the environment in Fig-
ure 2.2.

Figure 2.2: Luminar LiDAR in action

Currently, LiDAR units are big, and fairly expensive - as much as 10 times the cost of
camera and radar — and have a more limited range. You will most often see them mounted
on Mapping Vehicles, but as the technology becomes cheaper, we might see them on trucks
and high-end cars in the near future.

1Luminar https://www.luminartech.com/
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2.4 RGB Cameras

Cameras are the essential sensors for self-driving cars. Most imaging sensors are sen-
sitive from about 350 nm to 1000 nm wavelengths. The most common types of
sensors for cameras are CCD (charged coupled device) and CMOS (complementary
metal–oxide–semiconductor). The main difference between CCD and CMOS is how they
transfer the charge out of the pixel and into the camera’s electronics.

CCD-based image sensors currently offer the best available image quality, and are ca-
pable of high resolutionsm making them the prevalent technology for still cameras and
camcorders.

An important aspect of cameras is the camera model that describes how points of the
world translate to pixels in the image. That is going to be essential when we want to
apply the inverse projection to determine the world-position of objects in the picture.
This will be discussed in the following chapters.

2.5 GPS & WPS

Originally introduced for military applications in 1974, GPS probes today can be found
in cameras, watches, key fobs, and of course, the smartphone in our pockets.

The lesser-known WPS stands for Wi-Fi Positioning System, which operates similarly.
When a probe detects satellites (GPS) or Wi-Fi networks (WPS), it can determine the
distance between itself and each of those items to render a latitude and longitude. The
more devices a GPS/WPS probe can detect, the more accurate the results. On average,
GPS is only accurate to around 20 meters.

For WPS the most common and widespread localization technique is based on measuring
the intensity of the received signal, and the method of "fingerprinting". Typical parameters
useful to geolocate the wireless access point include its SSID and MAC address. The
accuracy depends on the number of nearby access points whose positions have been entered
into the database. The Wi-Fi hotspot database gets filled by correlating mobile device
GPS location data with Wi-Fi hotspot MAC addresses.
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Chapter 3

Computer vision

After collecting data from the sensors we choose we need to implement the right algorithms
to extract information from the sensor data. In this chapter I start with explaining the
basics of computer vision and then move on to advanced convolutional neural netowrks
that will help our goal.

Computer Vision, often abbreviated as CV, is defined as a field of study that seeks to
develop techniques to help computers “see” and understand the content of digital images
such as photographs and videos.

The problem of computer vision appears simple because it is trivially solved by people, even
babies. Nevertheless, it largely remains an unsolved problem based both on the limited
understanding of biological vision and because of the complexity of vision perception in a
dynamic and nearly infinitely varying physical world.

3.1 Challenges in Computer Vision

Image classification is considered to be the most basic application of computer vision. The
rest of the developments in computer vision are achieved by making small enhancements
on top of this. Since this task is intuitive for us, we fail to appreciate the key challenges
involved when we try to design systems similar to our eye. Some challenges for computers
are:

• Variations in viewpoint

• Difference in illumination

• Hidden parts of images, occulsion

• Background Clutter

3.2 Traditional approaches

Various techniques, other than deep learning are available in computer vision. They
work well for simpler problems, but as the data becomes huge and the task becomes
more complex, they are no substitute for deep CNNs. Let’s briefly discuss two simple
approaches.
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3.2.1 KNN (K-Nearest Neighbours)

In the KNN algorithm each image is matched with all images in training data. The top
K with minimum distances are selected. The majority class of those top K is predicted
as output class of the image. Various distance metrics can be used like L1 distance (sum
of absolute distance), L2 distance (sum of squares), etc. However KNN performs poorly
- qute expectedly - they have a high error rate on complex images, because all they do is
compare pixel values among other images, without any use of image patterns.

3.2.2 Linear Classifiers

They use a parametric approach where each pixel value is considered as a parameter. It’s
like a weighted sum of the pixel values with the dimension of the weights matrix depending
on the number of outcomes. Intuitively, we can understand this in terms of a template.
The weighted sum of pixels forms a template image which is matched with every image.
This will also face difficulty in overcoming the challenges discussed in earlier as it is difficult
to design a single template for all the different cases.

3.3 Convolutional Neural Networks

Visual recognition tasks such as image classification, localization, and detection are key
components of computer vision. However these are not possible to achieve with traditional
vision.

Recent developments in neural networks and deep learning approaches have greatly ad-
vanced the performance of these state-of-the-art visual recognition systems.

Neural networks are the basis of deep learning methods. They are made up of multi-
ple layers, each layer containing multiple perceptrons. Layers can be fully-connected or
sparsely if possible, providing some performance benefits. Each perceptron is an activation
function whose input is the weighted output of perceptrons from previous layers, and the
function is usually a sigmoid function. A neural network’s first layer is the input layer
and the last layer is the output, which could be an array of perceptron where only one
yields a high output creating a classifier. Layer in-between are called hidden layers and
it is up to design and experimentation the determine what is the right configuration of
hidden layers.

Figure 3.1: Neural network visualization. Image taken from
CS231N Notes

Neural Networks (NN) are good at classifying different patterns recieved in the input
layers however they are not sufficient for even image classification, because in one part the
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number of inputs is way to high. Consider a high resolution image with 1000 × 1000 × 3
pixels, then the NN has 3million input parameters to process. This takes a long time and
too much computational power.

Secondly the neural network architecture in itself is not a general-enough solution (if you
think about it, it is similar to a linear classifier or a KNN).

Convolutional Neural Network (CNNs) however solve image classification and more. A
CNN is able to capture the spatial features in an image through the application of relevant
filters. The architecture performs a better fitting to an image dataset due to the reduction
in the number of parameters involved and reusability of weights.

There is material on the internet in abundance about how convolutional neural networks
work, and I have read many of them, but the one I recommend most is the Stanford course
CS231N1.

The general architecture of CNN is similar to a cone, where the first layer is the widest and
each layer first convolves multiple filters (which in the beginning of the CNN correspond
to edges and corners) applying ReLU (rectifier, non-linearity function) then it downsizes
the input which is called the max pooling. This repeated over and over in the end results
in a small tensor which can then be fed to the fully-connected (FC) layers (i.e. a neural
network) which acts as the classifier.

Why is this the winner architecture? Because if you think about it the neural network
in the end only has to vote for the presence of the right features in roughly the right
image position, not for each pixel. A visualization of a CNN’s architecture can be seen in
Figure 3.2.

Figure 3.2: Architecture of a CNN

There are various architectures that have emerged each incrementally improving on the
previous ones: LeNet [9] - the work of Yann LeCun himself, AlexNet [8] VGGNet [10]
GoogLeNet [11] ResNet [12]

3.3.1 Deep Learning

Deep learning referes to the procedure of training neural networks and convolutional neural
networks to perform the task at hand accurately. During deep learning first a dataset
is created with training images coupled with "ground truth" data that is the required
prediction for each image. The neural networks are then fed with the images in batches for
a certain number of iterations - epochs. The weights of the neural network and the filters

1 Stanford CV course CS231N https://cs231n.github.io/
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Figure 3.3: A visualization of the features learned in the first con-
vnet layer in AlexNet [8]. AlexNet was a CNN which
revolutionized the field of Deep Learning, and is built
from conv layers, max-pooling layers and FC layers.
Image taken from CS231N notes.

are adjusted with the loss function that comes from calculating the error of the current
prediction and the ground truth for each image. This error is then "backpropagated"
which is just another way of saying it is multiplied with the derivative of each weight in
the network and subtracted from it. For filters this means "filtering filters", so only those
filters will stay in the convnet which resulted in a non-zero gradient in the neural network.

3.4 Detection and Segmentation

3.4.1 Object Detection, Localization

The task to define objects within images usually involves outputting bounding boxes and
labels for individual objects. This differs from the classification / localization task by
applying classification and localization to many objects instead of just a single dominant
object.

If we use the Sliding Window technique like the way we classify and localize images, we
need to apply a CNN to many different crops of the image.

In order to cope with this, researchers have proposed to use regions instead, which are
suggestions of regions that are likely to contain objects. The first such convnet is called
R-CNN [13] (Region-based Convolutional Neural Network).

An immediate descendant to R-CNN is Fast R-CNN [14], which improves the detection
speed through 2 augmentations: 1) Performing feature extraction before proposing regions,
thus only running one CNN over the entire image, and 2) Replacing SVM with a softmax
layer, thus extending the neural network for predictions instead of creating a new model.

There are other methods for object detection and localization but in general they are all
based on first feature extraction then classification with different intermediate procedures.

• You Only Look Once (YOLOv4 [15] being the latest)

• Single Shot MultiBox Detector (SSD) [16]
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Figure 3.4: R-CNN architecture

3.4.2 Segmentation

Central to Computer Vision is the process of segmentation, which divides whole images
into pixel groupings which can then be labelled and classified. Particularly, Semantic
Segmentation tries to semantically understand the role of each pixel in the image (e.g. is
it a car, a motorbike, or some other type of class?). Therefore, unlike classification, we
need dense pixel-wise predictions from the models.

One of the earlier approaches was patch classification through a sliding window, where
each pixel was separately classified into classes using a patch of images around it. This,
however, is very inefficient computationally because we don’t reuse the shared features
between overlapping patches. The solution, instead, is Fully Convolutional Networks
(FCN) [17].

3.4.3 Instance Segmentation

Beyond Semantic Segmentation, Instance Segmentation segments different instances of
classes, such as labelling 4 cars with 4 different colors. Instance segmentation problem is
explored at Facebook AI using an architecture known as Mask R-CNN [18].

The idea is that since Faster R-CNN works so well for object detection is it possible to
extend it to that is also performs pixel-level segmentation.

Mask R-CNN adss a branch to Faster R-CNN that outputs a binary mask that says
whether or not a given pixel is part of an object. The branch is a Fully Convolutional
Network on top of a CNN-based feature map. Detectron2 [6] a detection framework
developed by Facebook, is based on Mask R-CNN and it is the framework I ended up
using.

3.5 Tracking

Object Tracking refers to the process of following a specific object of interest, or multiple
objects, in a given scene. It traditionally has applications in video and real-world interac-
tions where observations are made following an initial object detection. Now, it’s crucial
to autonomous driving systems.

Simple Online and Realtime Tracking - SORT [19] and Deep SORT [20] Are both based on
Kalman filters to use the available detections and previous predictions to arrive at a best
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guess of the current state. Deep SORT extends SORT with the use feature extraction
with encoders. These features are then kept in a dictionary for each object. For each
detection throughout the tracking process a distance is calculated between signatures
in the dictionary and the current object’s feature model this way tracking previously
identified objects.
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Chapter 4

Other solutions

It is important for a self-driving company to openly detail their technical solution because
it let’s people trust their autopilot solution. However it wasn’t easy to find open infor-
mation about the details of different companies, because the technology itself is in early
stages. The details I found did provide inspiration on how to combine different algorithms.

4.1 Tesla

The only open information I found about Tesla’s autopilot technology is their own keynote
about autopilot 1.

The sensor suite for tesla vehicles is seen on Figure 4.3. Tesla uses 360◦RGB camera
vision and sonar sensing with a radar facing forward. The sonar sensors provide depth
information for the surrounding objects and the radar provides depth data for further
distances.

The algorithms they use was not clear from the keynote, however I found two clips on the
internet that claim to be the output of Tesla’s detection system. Based on that and the
keynote it is safe to assume that they integrate the following tasks.

• Object detection and 3D bounding box detection

• Lane detection and path estimation

• Tracking

• Possibly some kind of segmentation

• Traffic sign detection and understanding

With sensor fusion they achieve depth estimation and detection thus they are able to
reconstruct the scenes around the vehicle.

1Tesla Autonomy Day https://www.youtube.com/watch?v=Ucp0TTmvqOE
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Figure 4.1: A screenshot form a clip that shows Tesla Autopi-
lot’s perception output https://www.youtube.com/
watch?v=fKXztwtXaGo

Figure 4.2: Another screenshot form a clip that shows Tesla Au-
topilot’s perception output https://www.youtube.
com/watch?v=_1MHGUC_BzQ&t=225s
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Figure 4.3: Tesla sensor suite infographic from https://www.
tesla.com/autopilot
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Chapter 5

CARLA Simulator

CARLA’s mission is to create a simulator that can simulate sufficient-enough real-world
traffic scenarios so that it is more accessible for researchers like myself to research, develop
and test computer vision algorithms for self-driving car.

CARLA [5] is an open-source simulator for autonomous driving research. It is written
in C++ and provides an accessible Python API to control the simulaton execution. It
has been developed from the ground up to support development, training, and validation
of autonomous driving systems. In addition to open-source code and protocols, CARLA
provides open digital assets (urban layouts, buildings, vehicles) that were created for this
purpose and can be used freely. The simulation platform supports flexible specification of
sensor suites, environmental conditions, full control of all static and dynamic actors, maps
generation and much more. It is developed by the Barcelonian university UAB’s computer
vision CVC Lab and supported by companies such as Intel, Toyota, GM and others. The
repository for the project is at https://github.com/carla-simulator

It provides scalability via a server multi-client architecture: multiple clients in the same
or in different nodes can control different actors. Carla exposes a powerful API that
allows users to control all aspects related to the simulation, including traffic generation,
pedestrian behaviors, weathers, sensors, and much more. Users can configure diverse
sensor suites including LiDARs, multiple cameras, depth sensors and GPS among others.
Users can easily create their own maps following the OpenDrive standard via tools like
RoadRunner. Furthermore it provides integration with ROS1 via their ROS-bridge

I used CARLA 9.8.0 in the project that was the latest at the time (2020 March 09). Carla
has a primary support for Linux so I could run it easly on Ubuntu. It requires a decent
GPU otherwise the simulation is going to be slow.

It’s important to mind the coordinate system used in Carla, because later when we will
extract data the axes must be mapped to the correct data points. Since Carla is built
with Unreal Engine 2 it uses the coordinate system as in Figure 5.1: X coordinate is to
the front of the ego actor, Y is to the right of ego and Z is to the top.

1Robot Operating System (ROS) https://www.ros.org/
2Unreal Engine https://www.unrealengine.com/
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Figure 5.1: Carla coordinate system

5.1 Is a simulation enough?

I believe the future of self-driving car research and development is in part with simulations
and in part with real-world training as well. To develop a self-driving AI from ground up
it is certainly advisable to first develop and test the algorithms in a simulation.

In order to create simulations that are rich and different Carla provides a large variety of
actors and maps. The traffic manager can also be parametrized to control how pedestrians
and vehicles move: their speed, minimum distance, and even "aggressivity" towards each
other, which means how willing are they to collide instead of waiting until the actor in
front moves away. This is actually useful as it helps unlock possible traffic deadlocks. The
latest CARLA provides 8 maps but in newer versions they will be adding new maps. You
can see a screenshot of each rendering in the 6 maps I used in Figure 5.2.

Figure 5.2: Variety of maps in Carla

A simulation obviously can’t return the variety and exact nature of scenarios that happen
in nature. However I believe they are sufficient for testing an entry-level self-driving system
and that with the use of simulations a company can lower the costs of development. The
rise of simulators itself shows there is a need for the market.
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5.2 CARLA Simulation sensors

The Carla simulator’s API support a wide range of sensors: RGB Cameras, LiDAR,
Radar, GPS, gyroscope, accelerometer, compass and more. These are easy to use, If you
are interested I recommend reading the sensors reference in their documentation 3

Carla also provides miscellaneous sensors that help collecting ground-truth data for deep
learning applications. This includes semantic segmentation camera, depthmap camera and
other simple ones such as collision detector as seen in Figure 5.3.

Figure 5.3: Different sensors and cameras in Carla (semantic seg-
mentation, LiDAR, depthmap)

5.2.1 Other simulators

There are a couple of other dedicated projects for simulators. There is Deepdrive from
Voyage auto4, an American AD supplier, NVIDIA has a project going on called Drive Con-
stellation5 which is said to be advanced but is not opensource. Nvidia provides Harware
In the Loop simulation for Drive Constellation which is an even more advanced simulation
infrastructure that allows for testing the systems real-timeness. There is another project
called RFPro6. However these are either not opensource or not mature enough. CARLA
Simulator [5] was by far the best one for my case.

3CARLA sensors reference https://carla.readthedocs.io/en/latest/ref_sensors/
4Deepdrive Voyage https://deepdrive.voyage.auto/
5NVIDIA Drive Constellation https://developer.nvidia.com/drive/drive-constellation
6RFPro http://www.rfpro.com/
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Chapter 6

Assumptions made and limitations

In order to simply the task of scene understanding we need to define boundaries to measure
the success of the detector.

6.1 Ideal traffic situations - only known actors

The first essential assumption is that there will only be ideal situations which means
that we will only need to detect actors that we expect on the road: vehicles, bicycles,
pedestrians. In the real world foreign objects on the road are a usual and dangerous
phenomenon, however here I won’t take that into account.

6.2 Daylight situation

First of all we are going to specialize to day-light situations only. This detection with
RGB cameras at night is difficult, in order to achieve that we need other sensors such as
Radar, Sonar or LiDAR. As we are only using RGB cameras we arge going to assume that
all driving situations occur in daylight.

6.3 Flat plane assumption

Another important assumption is that the driving field and landscape area is flat. It isn’t
difficult to detect object that are a bit higher on the picture but it is difficult to recognize
the curvature of the plane on the image. In case the detector can interpret curvature and
the ego car is on an angled road the angle data from the gyroscope sensors has to be take
into account and subtracted from the percieved angles. It is generally true that inorder
to recognize true information about the world the relative position and orientation has to
be taken into account.

In order to reduce this complexity, we are going to only take into account the objects’
position on the x,y surface coordinates and disregard the Z coordinate on evaluating the
detection. This will be discussed further in Chapter 9 about improvements.

23



6.4 Path, lane and road detection

As described before there are many ways of detecting lane and the easiest is to use the
Hough transform and detect the lanes directly in front of the car. However this is not a
robust solution: this only gives good results in good illumination and weather situations.
It is true that most situations are like this but there are still many unpainted roads, dirt
roads or simply due to lightning and weather the lane edges won’t be clear.

One robust solution would be to take into account the vehicles in front and behind us and
interpret their path as the right path and regress the lane to their path.

Another solution is to take into account previously driven paths. This is the approach
Tesla takes however it is not clear how exactly.

6.5 Keypoint detection and orientation

It is important to determine the orientation of the detected cars on the road, so that the
algorithm knows the depth data corresponds to which side of the detected vehicle. It is
also a clue that helps in determining the direction of the car. Detecting keypoints could
be done with an algorithm similar to Latent 3D Keypoints [21] that I experimented with
(see Chapter 10).

Because the algorithm doesn’t take into account orientation the most straightforward way
to localize an object upon detection is to take the center of it’s bounding box. We will see
in the results chapter how big the resulting error is.

6.6 Tracking

The final algorithm does not include tracking, this means that the identity of each de-
tected actor/object is inconsistent throughout time. Tracking helps handling occlusion
of previously detected pedestrians/vehicles and also in building up a knowledge base for
each actor throughout it’s presence in the scene. This can help in estimating the actor’s
velocity, acceleration and it provides a base for interpreting intentions. I simplified the
task by not considering identity throughout time an important factor, eventhough in a
real system it is a must-have.

6.7 Only detection and localization

The final product will be a detector that can detect vehicles and pedestrians up more than
a 100 meters and localize them using stereo vison. The detector work with a reasonable
accuracy error and is built in an extensible way so that tracking, and improved instance
segmentator and lane detection can be plugged in. The webvisualizer then can be easily
extended to show futher information by a newer version of the detector.
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Chapter 7

Design and implementation

Let’s recap the task flow of the task I described in the Introduction: After configuring the
simulator with the designed camera setting I render multiple traffic scenarios in different
maps provided by CARLA while extracting all necessary information into a log file to later
compare the detection log with

Figure 7.1: Task flow

7.1 Tools used

Soon it became obvious that Linux operating system is the right tool to use for develop-
ment. I have been using Ubuntu before this project as well so I was already familiar with
everything. The main IDE I used throughout the project is Visual Studio Code, which
thanks to it’s openness and community has many useful extensions that helped me develop
in fact every part of the thesis: Python, Nodejs and Javascript for the webvisualizer and
finally LaTeX and ofcourse git support.

I also used Conda which is I think an essential tool when you want to develop ML and
AI projects with Python. Conda makes it easy to create and use separate Python en-
vironments. This is important because different implementations of algorithms require
different versions of the same packages thus it keeps a clean separation. The drawback is
that consecuently it requires an excessive ammount of hard-drive space.

Upon developing the algorithm and experimenting with it I used Jupyter Notebook which
is a Python runtime on top of the bare one and a web-based IDE at the same time. With
Jupyter Notebook it is easy to change and re run the code thanks to it’s "kernel" system,
which keeps the value of variable and imported packages between executions.
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For the GPU-intensive tasks such as simulation and convnet calculations in the detector
I was provided with a remote Titan X GPU1 by my university.

7.2 Choosing the sensor suite

Mounting cameras around the vehicle to have an all around vision is an essential design
strategy, as we have seen in the work of other companies in Chapter 4. However we will
need to determine depth as well. I decided to use only cameras in a stereoscopic structure
to create 5 stereo sides around the vehicle. The following image shows the design setting
with field of views visualized in Figure 7.2.

Figure 7.2: The stereo camera setting I used on top of the virtual
Tesla Model 3

In details:

• Front stereo: two cameras looking straight to the front 0.8 meters apart

• Right corner and left corner stereo cameras: the cameras are on the diagonal corners
of a 20 cm wide 20cm tall triangle creating two 45◦angled stero vision.

• Right and left side stereos are turned 90◦to the sides and they are apart 0.5 meter.

The cameras are 1.5 meters above the ground and they are mounted relative to the bottom
center-point of the vehicle.

The advantage of puting stereo cameras apart to a relatively large distance is that it
increases the accuracy of the stereo block matching algorithm to a further distances. The
drawback however is that a smaller portion of the right and left side images are going to
intersect hence creating a smaller field of view. However due to the corner stereo cameras
this is not a problem for us.

1 Titan X GPU https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
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7.3 Configuring the simulation

Carla simulator can be ran in two time-step settings: variable and synchronous. In real-
world perception it is a complex task by itself to synchronize multiple cameras with each
other so that when the algorithm calculates information based on data from multiple
sensors they all correspond to the same moment in time with an error boundary. In a
simulation however we can have the freedom to synchronize the simulation timesteps them-
selves and collect all imaging data between each timestep. Setting Carla to synchronous
timestep ensures that all images in a certain frame are collected and respond to the same
moment.

I used 30FPS timestep setting so that physics calculations are still realistic but the per-
formance is not too bad. We also have to account for the size of the generated images:
it was good to half the size of the image datasets from a 60FPS setting. Increasing the
traffic participants also degrades the performance. I usually used 200 vehicles and 100
pedestrians for each map, that resulted in realistic traffic scenarios.

I recorded different scenarios of approximately 1 minute, which means 1800 frames on
30FPS. On the Titan X machine it it took 15 minutes to render 1 simulation minute,
i.e. it ran the simulation with 2FPS. Note, this is different from the simulation time-step
which we fixed to 30FPS. Since I collect 10 images in each frame it results in a dataset of
18000 images.

The camera setting I used is an undistorted camera that takes 1280×720 resolution images,
i.e. HD 720p images, compressed with JPEG to yield a reasonable size. This way one
image is on average 215 kilobytes instead of 1MB which is a good compression rate and
this was the limit where I did not see any difference in detection accuracy.

In a real-world systems images go straight to the GPU and CPU unit and they get down-
scaled to the choosen size before feeding into the algorithm. I had to resort to compression
because of the research nature of the project: I reran and tested the accuracy of the de-
tector many times on the same dataset.

Using an undistorted camera matrix only means that we need to use one less back trans-
formation matrix in the detection calculations. In real-world the intrinsic camera matrix
is calculated and corrected for cameras that are mounted on cars and it is part of the
calculation.

Besides imaging we have the ground truth log data. During the simulation, besides ren-
dering images I coded a logger that logs the necessary information of the state of the
simulator for each frame. This information is built up in a json-like dictionary, and at the
end of the simulation it is saved to one file, that I call the framelist.

7.4 Extracted data

Naming the images in an organized way is important to make it easy to read the images
in a structured way upon detection. Each image starts with the number of the frame it
was taken in. Starting the simulator server Carla increases a frame counter starting with
1. To know which image corresponds to which camera, the framenumbers are postfixed
with a label. Figure 7.3 shows the postfixes for each image.

In each frame I log information about the current state of the simulation. For the purpouses
of the final detector the following information gets logged in each frame:
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Figure 7.3: L2/1, R1/2: Right side/Left side first and second
cameras, LC(2/1), RC(1/2): Right corner, left corner
cameras, FL FR: Front left, front right cameras

• Frame’s number: the value of the frame counter at each frame

• For all walker and vehicle actors in a 100 meter radius from the ego car:

– Id: corresponds to the actor’s unique id among other actors.
– Relative position: X, Y, Z coordinate of the actor in the CARLA coordinate

system (see Figure 5.1)
– Distance: Euclidean distance from the ego car

• Waypoints: these are center and left-right points of the lane the egocar is currently
in up to 30 points forward. These were meant to be the ground-truth data for
lane-detection

This information is then exported into a JSON file with the following format:
frameList: [

{
frame: Number,
actors: [

{
type: car|pedestrian,
id: Number,
relative_position: {

x: Number,
y: Number,
z: Number,

}
},

],
},

]

For a one-minute simulation the ground-truth json file is approximately 20 megabytes. It
isn’t optimal to save information like this for longer simulations. In those cases it is rec-
ommended to use a binary format. Carla provides a way to save binary information of the
recording but unfortunately there were issues with recording that way, so I ended up with
this custom log format. However it ended up being beneficial, because the webvisualizer
simply loads the json files (detection and ground truth) into two JavaScript objects.

7.5 Detector

The algorithm plan is the following: for each stereo pair of images calculate the disparity
map with a stereo block matching algorithm. Then detetect objects and their segmenta-
tion mask (instance segmentation) with a state-of-the-art convnet and then extract the
disparity data using the segmentaiton mask. Then use the extracted disparity data to
estimate the depth of the detected object and then reproject to Carla-world coordinates
to match the logfile coordinate system.
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7.5.1 Detectron2

Detectron2’s [6] Mask R-CNN model provides both object detection and instance segmen-
tation so I decided to use it. Detectron is built with PyTorch, Facebook’s own GPU-aided
ML library.

The algorithm runs the detecton prediction only on the left image of each side, because
later on we will need the segmentation mask of the left image to extract the depth data
from the disparity map generated by the stereo block matching algorithm.

Before prediction if our ego car falls into the image it is filled with zeros, i.e. it is occluded
ith black color. It is better to use black since it is all zeros, and therefore convnet is not
going to be sensitive for those parts of the image.

A visualization of the detection results can be seen on Figure 7.4

Figure 7.4: A visualization of the Detectron2 detections and in-
stance segmentation on an ego-occluded image

7.5.2 Depth estimation

To perform depth estimation I found to easiest way is to use OpenCV a widely used library
in computer vision that includes the stereo processing tools I needed.

7.5.2.1 OpenCV

OpenCV is a library of programming functions mainly aimed at real-time computer vision
originally developed by Intel. The library is cross-platform and free for use. It provides
traditional Computer Vision tools such as the stereo correspondence algorithm using block
matching [22] and an advanced version of it the Semi-Global Block Matching method
(SGBM) [23] that I used for the stereo disparity map calculation.
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7.5.2.2 Stereo Block Matching Algorithm

The Stereo Block Matching Algorithm works by comparing the neighborhood of a pixel to
each neighborhood of the row of the other image - the measure of similarity can be different,
but usually the mean squared error is used. Usually before using the stereo block matchin
algorithm a camera calibration is required. This happens with the chessboard calibration
method 2 where a flat checkerboard is displayed in front of the two stereo cameras. The
calibration algorithm then calculates the distortion for each camera and rotation difference
between the two cameras to calculate the intrinsic matrix.

In our case since we record images in a super ideal way: no distortion and perfectly parallel
cameras we don’t need any calibration and application of inverse intrinsic matrix before
using the SGBM algorithm.

Figure 7.5: A visualized disparity map result after using
OpenCV’s StereoSGBM algorithm on the front stereo
side

The StereoBM algorithm considers the left image as the primary, so it will return a dis-
paritymap that corresponds to the pixels of the left image.

7.5.2.3 Triangulation

Triangulation is a simple method of deriving the depth coordinate when we have two
parallel cameras. Figure 7.6 shows the camera setting of an ideal stereo setting. Recall,
that each stereo side in our setting is like this.

If there is a point P in the real world in the field of view of the stereo camerase, the point
will be projected onto different points of both camera’s image plane. If the cameras are
set in an ideal parallel stereoscopic setting then we can easily calculate the depth of the
point. The pixel difference between between pixels correspoonding to the same block can

2Chessboard calibration in OpenCV https://docs.opencv.org/master/dc/dbb/tutorial_py_
calibration.html
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Figure 7.6: An ideal parallel stereo camera model.

be calculated with xr-xl. The OpenCV Stereo BM algorithm provides this value for each
matched pixel. From now on all we have to do is use triangulation to calculate the depth
of each pixel. The f corresponds to the focus length and Z corresponds to the real depth
of the point.

The following equations hold true for the figure above from similar triangles.

z

f
= x

xl
= x − b

xr

z

f
= y

yl
= y − b

yr

(7.1)

From this the triangulation is as follows:

Depth Z = f · b

xl − xr
= f · b

disparity

X = xl · z

f

Y = yl · z

f

(7.2)

Where xl and yl refers to to distance from the center of the image to the center points of
the detection boundingbox (in the left image).

7.5.2.4 Depth calculation

Now we know the way to calculate the depth knowing the disparity. The result of the
SGBM, seen on Figure 7.5, is a 2D array containg valid and invalid data values. In order
to determine the right disparity value for a detection it is not enough to simple take the
values under the mask. The disparities under a mask contain values for the same object’s
closest point and farthest point from the camera. Taking into account the simplifications
we established in the previous chapter there are two solutions to find the distance of the
object: 1.) take the average of the valid disparities under a mask 2.) take the mode of
the disparities. By intuition we would choose taking the average, however that is going
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to result in high error and high variance. The reason is, that the segmentation itself is
going to mask values that might not correspond to the object’s disparities. Even a few
values that are far from the average the object’s disparities can change the average of the
masked disparities drastically. Using the mode the algorithm yielded much more stable
results, that way it simply is ignores the small inaccuracies of the masking and disparity
error and takes the most dominant disparity value. The visualization of masking can be
seen on Figure 7.7.

Figure 7.7: Masking the instance segmentation with the dispari-
tymap filters the necessary values for estimating the
vehcile’s depth

7.5.3 Back projection

Each stereo side has a transformation matrix initialized before running the algorithm.
Each matrix is an affine 4x4 transformation matrix, that does the following in this order:

1. It swapes the axes from the image coordinate system to Carla’s coordinate system
z->x, x->y, y->z

2. It rotates the points with the same rotation as the camera

3. It translates the camera with the same translation for the camerase relative to the
vehcile’s bottom center point.

The resulting x, y, z coordinates are the final detection coordinates that go into the
detection log.

7.5.4 Final pseudo-code

The final algorithm pseudo-code:
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for each frame:
for each stereo side:

1. read left and right image
2. occlude ego from image
3. compute disparity map using stereo bm.
4. predict detections and instance segmentation
for each detection:

mask disparity map with detection segmentation
calculate mode of the masked disparity
apply triangulation and inverse projection
add actor to frame

add frame to framelist
save detection list

7.6 Web visualizer

As I mentioned before in order to compare the detection result and the ground truth log
of each rendering scenario it would be useful to have a visusalization of the detection
replayed. This is similar to the information shown on a monitor of a self-driving car.

Since I already had experience in Javascript and in ReactJs 3 - an easy-to-use web applica-
tion framework developed by Facebook - I decided to look for options in 3D visualization.
I found WebViz4, a React library specifically made for 3D visualization of traffic scenarios.
It has a compelling declarative API.

There are two main views in the end product webvisualizer: The video montage and the
3D visualization (Figure 7.8)

The main feature of the webvisualizer is to replay each simulation and see the original,
detection and depthmap videos in synchronization with the 3D visualizer that displays
both the detection log and the ground truth log for each frame. The webapp is equipped
with control buttons that help the control of the playback.

Figure 7.8: Screenshot of the webvisualizer

3ReactJs https://reactjs.org/
4WorldView WebViz https://webviz.io/worldview/
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Figure 7.9: The montage videos in the webvisalization: original,
depthmap, detections

7.7 Additonal scripts

In order to simplify some tasks that included multiple repetitive commands I had to
create some scripts that let me invoke them in one command. One script was to start the
simulator, the ego controller and spawn actors in a choosen map all in one script. Another
useful script was to create a montage of all frames and immediately create a video and
compress it multiple times.
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Chapter 8

Results

8.1 Accuracy

The best way to see the accuracy of the detector is through the webvisualizer. The reader
is encouraged to visit https://najibghadri.com/msc-thesis/ where you can interact
with with the simulation playback and see each detection.

The reader might notice that most of the time the detected objects are located closer than
the ground truth. Recall, that the depth estimation happens on the surface of the object.
Estimating the centerpoint is difficult. If instead of working with centerpoints I would
have worked with a more complex approach of first detection orientation or 3D bounding
box, ther would be no need for working with center points. I discuss improvements later
on.

Figure 8.1: General accuraccy of the detector visualized in the
webviewer

Genearlly there are no missed objects but there are false positives. Most of the detections
are accurate within 0.5meters.

Depth estimation is not accurate enough due to the inaccuracy of the blockmatching
algorithm. This can be fixed with the use of LiDAR or radio sensors instead of stereo
imaging. Optimal sensor suite is discussed in Improvements Chapter 9.
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Figure 8.2: False positive detection where a building is detected
as a train

Since the setero sides overlap and they see different sides of the detect objects in the
detection log the objects appear as many times as many sides it appears on as seen on
Figure 8.3. This can be fixed by using tracking and using a shared feature dictionary. An-
other solution is to abandon stereo camera based depth estimation and use mono cameras
with radio or LiDAR sensors for depth estimation with cameras having a small overlapping
region. This would be similar to Tesla’s approach.

Figure 8.3: Multiple detections of the same object due to overlap-
ping stereo sides

Despite these depth estimation can be accurate to 70 meters even as seen on Figure 8.4.

An automatic quantification method for the error will be discussed in Chapter 9.
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Figure 8.4: Relatively accurate depth estimation for far distances
of ~70 meters

8.1.1 Fine tuning

Choosing different convnet models for Detectron2 can change the performance and ac-
curacy of the detector. I used the ResNet-101 model [12]. ResNet50 is faster but I
experienced more detection misses.

Sides FPS average

All 5 sides 0.53 FPS
One side 2.73 FPS

In Chapter 9 imporvements on instance segmentation research will be discussed that might
lead to an improved detection speed over Detectron2.

8.2 Z coordinate ignored

As discussed earlier in Chapter 6 about assumptions, the Z coordinate (in Carla UE
coordinates Figure 5.1) is disgregarded in the webvisualization. The accuracy of the Z
coordinate is not worse or better the X and Y coordinates but it doesn’t add information
and due to an inconsistency in CARLA simulator when returning the location of actors
for vehicles and pedestriands the center point is interpreted differently. Hence it showed
a false inaccuracy in the Z direction, however not significant as seen on Figure 8.5.

In Chapter 9 on imporvements a different more complex and robust approach to position
estimation is discussed that doesn’t use detected bounding box centerpoints.

8.3 Dark results

There is only one map with a "night" situation, and it takes place in a city that is well-
luminated, hence I don’t consider it a night light test, but it is darker than other scenarios.
The results are good no significant objects were missed.
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Figure 8.5: Inaccuracies on the Z coordinates are not significant

Figure 8.6: Night situation yields good performance

8.4 Hardware requirements

It wasn’t possible for me to evalute the real-timeness of the system simply because the
architecture doesn’t allow that. As discussed earlier in Chapter 5 Nvidia Drive Con-
steallation has support for HIL simulation that could be used to test the real-timeness of
systems.
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Chapter 9

Improvement notes

In Chapter 6 I established some simplifications to the system. In order to create a fully
capable scene understanding algorithm the following improvements are necessary.

9.1 Tracking and correlation

In order to measure the accuracy of detections (false positives, false negatives), it is im-
portant to correlate the positive detections with the most likely ground truth actor. This
could be done by finding the closest truth actor to each detection. There is no point
in implementing more robust solutions, because if the error is so high that there are
conflicting possibilities for the nearest possible truth object then the depth estimation is
fundamentally flawed.

9.2 Faster instance segmentation with Yolact++

A new research has emerged relating instance segmentation, YOLACT [24] and
YOLACT++ [25]1, that achieves 30+fps on Titan X for instance segmentation and de-
tection. It is based on YOLO and uses the same resnet50 model that Detectron2 uses.
If this convnet achieves the same accuracy with a higher fps than it is replaceable with
Detectron2.

9.3 Optimal sensor suite

We have seen that companies use many sensors combined not only rgb cameras. In an
optimal setting I would use only one stereo camera setting to the front and rely on radar
and ultrasonic sensors for depth data. Monodepth [26] is also an option to estimate or
correct depth however it might not be a stable method.

9.4 Keypoint based detection and orientation

Keypoint or landmark based orientation estimation would be a robust method to determine
the orientation of vehicle in an image. This is imporant in order to determine which

1 Yolact++ repository https://github.com/dbolya/yolact
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side is visible to the depth map, and assign the depth data to that side of the object
and reconstruct knowing this information. In the next chapter I describe to methods I
experimented with to estimate orientation.

9.5 Data correction

The percieved information must be corrected with the car’s gyroscopic data, because
cameras get tilted. This is important when the road we are on or the road ahed of us has
a high difference in inclination.

9.6 Lane, path and road detection

Lane detection can be done with the prevalent methods such a Hough transform combined
with sliding window curve fit. Another possibility is to take into account the vehicles in
front and behind us and interpret their path as the right path and regress the lane to their
path. However this might lead to uninteded results.

9.7 Foreign object detection

With the usage of sonar and radar sensors and even more so with LiDAR it is possible
to detect object on the road. However it is more robust if the algorithm can detect when
there is an object on the road independent of what it is exactly. A solution to this would
be to use road segmentation which has to exclude segmenting the foreign object on the
road creating a hole in the segmentation.

9.8 Traffic light understanding

Traffic light understanding is a straightforward problem to have. Detection algorithm
trained on the COCO [7] dataset are already able to detect traffic lights. A difficult
problem to solve is if there are multiple traffic lights visible to the camera, but even then,
usually the closest one facing towards the vehicle is the one to follow. After determining
the traffic light we have to read the current value, which is a simple image processing
procedure. Optionally if this is not enough the algorithm can be made more robust by
teaching a convnet to be able to determine the position of the three light circles.

9.8.1 Traffic officer detection

Detecting traffic officers could also be a useful part of the algorithm. There are new human
pose estimation algorithms that could even help in understanding the gestures of an officer
controlling the road.

40



9.9 Unsupervised learning methods

One of the most exciting improvement after all improvements above have been achieved is
to research and implement Energy based models for self-driving cars, I recommend reading
the paper "A tutorial on energy-based learning" [9] by Yann LeCun et al.
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Chapter 10

Experimental results

10.1 YOLO

Initially I wanted to use YOLOv4 [15] as the sole detection algorithm. YOLO is indeed
realtime however it only provides 2D bounding boxes of the detections which is not enough
when we need to mask the depth map with an instance segmentation.

Figure 10.1: YOLOv4 under evaluation

10.2 Tracking

As mentioned previously it is essential to track objects throught time. I tested Deep
SORT [20] algorithm which is an improvement over Simple Online and Realtime Tracking
(SORT) [19]. This building block ended upnot being in the detector however a following
version will certainly need a tracker method.

Deep SORT also works with Kalman filters and it needs detection instances to predict
identites over time. Each bounding box is provided to the tracker which then creates a
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signature of the detection based on it’s pixel values and then calculates distances with
other previously dtected object from a dictionary. A single counter is incremented for
each new object that couldn’t be correlated with the previously detected objects.

I evaluated test using YOLOv4 as the detector. Results of a test video can be seen in
Figure 10.2

Figure 10.2: Screenshot during a video being processed by the
tracker.

10.3 Lane detection

When I experimented with lane detection I once tried to use a neural network for the task.
Hough transform and sliding window technique could have been enough but I was curious
of the accuracy on the simulator.

"Towards End-to-End Lane Detection: an Instance Segmentation Approach" [2] is a neural
network that basically works as an edge detector that is directed towards the vanishing
point in the image. Note the if the network had been trained it might have yielded better
results! In the results of the original paper the results were better but the training data
was specific to a certain road.

10.4 Orientation estimation

As mentioned earlier as an essential imporvement over the current algorithm. I evaluated
two approaches. The first approach is direct 3D bounding box detection the second is
keypoint detection.
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Figure 10.3: Lane detection performed well without training

10.4.1 3D Bounding box detection

Direct orientation estimation would be an important part of the detector as mentioned
previously in improvements. Before implementing the detector I tried a CNN imple-
mentation1 based on the paper "3D Bounding Box Estimation Using Deep Learning and
Geometry" [27]. This network works similarly to landmark detection but it adds geometric
constraints to regress the orientation of the bounding boxes.

Figure 10.4: Bounding box detection performed poorly. Note,
that YOLOv3 missed the motorcycle, thus it is not
predicted

10.4.2 Keypoint detection

After the previous approach failed next idea was that we could derive the orientation of
the vehicles if we knew the position of it’s keypoints/landmarks in the images. After some
research I found a research developed at Google AI "Discovery of Latent 3D Keypoints
via End-to-end Geometric Reasoning" or KeypointNet [21].

13D Bounding Box implementation https://github.com/skhadem/3D-BoundingBox
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The netowrk performed poorly on CARLA vehicles. I tried with and without instance
segmentation but the results seemed independent.

Figure 10.5: Keypoint detection on CARLA vehicles was inaccu-
rate

Figure 10.6: Expected results (from https://keypointnet.
github.io/)
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Chapter 11

Conclusion

The final scene understanding algorithm is not a system that can be applied by itself
in a real scenaro, however it builds on the same basic ideas for scene understanding for
cars. More importantly this thesis help me understand all the building block required for
autonomous driving. The work of companies like Tesla and Waymo constitues many top
researchers in the field. In Hungary this market is yet in early stages but companies like
BOSCH or a smaller company like AIMotive are already present and working on the field
with a good pace.

Working on this thesis has been a unique experience because the whole field was new to
me before diving into it. Usually thesis projects require that the student works on the
same project for 4 semesters, however I had to take a different path. I did my previous
research work in Web Applications and applied blockchain technology. Then I took an
optional a deep learning class and it sparked my interest for AI even more. Taking this
project was a risk and I had to learn about basic computer vision processing methods,
algorithms, 3D vision, the camera model, convolutional neural networks and deep learning
and even a little bit of game engines because of the simulator. But in the end I learned
valueable things and I hope I can use this knowledge soon in an AI company perhaps one
that works on autopilots.
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